

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Leca® 0,5-2,5, Leca Denmark

Owner of the declaration: Leca International

Product: Leca® 0,5-2,5, Leca Denmark

Declared unit: 1 m3

The Norwegian EPD Foundation

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR. OUTDATED NPCR 012:2018 Part B for Thermal insulation products **Program operator:** The Norwegian EPD Foundation

Declaration number:

NEPD-7591-6967-EN

Registration number:

NEPD-7591-6967-EN

Issue date: 18.09.2024

Valid to: 18.09.2029

EPD software: LCAno EPD generator ID: 548874

General information

Product

Leca® 0,5-2,5, Leca Denmark

Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-7591-6967-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR. OUTDATED NPCR 012:2018 Part B for Thermal insulation products

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 m3 Leca® 0,5-2,5, Leca Denmark

Declared unit with option:

A1, A2, A3, A4, A5, C1, C2, C3, C4, D

Functional unit:

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Elisabet Amat, GREENIZE projects

(no signature required)

Owner of the declaration:

Leca International Contact person: Ana Raquel Fernandes Phone: (+351) 962 303 517 e-mail: anaraquel.fernandes@saint-gobain.com

Manufacturer:

Leca International Årnesvegen 1 2009 Nordby, Norway

Place of production:

Leca Denmark A/S Randersvej 75 Hinge 8940 Randers Denmark, Denmark

Management system:

ISO 14001ISO 9001

Organisation no:

918 799 141

Issue date:

18.09.2024

Valid to:

18.09.2029

Year of study:

2023

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804:2012+A2:2019 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Ana Raquel Fernandes

Reviewer of company-specific input data and EPD: Geir Norden

Approved:

Håkon Hauan, CEO EPD-Norge

Product

Product description:

The EPD describes results for production of lightweight expanded clay aggregate, labelled Leca ® 0,5-2,5, from the factory in Hinge, Denmark. Lightweight expanded clay aggregate is a granular ceramic material made from natural clay (see process information below). The main characteristic of expanded clay is low density combined with high strength. Leca ® 0,5-2,5 is used primarily in lightweight blocks and slabs, in water treatment, lightweight fillings and geotechnical fills for weightcompensation purposes. Thus Leca ® 0,5-2,5 is typically hidden in buildings or cast into concrete. The density of Leca ® 0,5-2,5 is 0,315 tonnes per m3. Further information or explanatory material may be obtained by contacting Leca Danmark A/S.

Product specification

The water content of the Leca® 0,5-2,5 is 0 % when the Leca® 0,5-2,5 is produced at Leca Danmark A/S Hinge. The storage conditions can change the water content of the Leca® 0,5-2,5 up to 25%.

Different waste are recovered in the production process both as fuels as clay additives. See additional Tech info.

Leca ® 0,5-2,5 is produced by using nearby clay and transported by using a conveyer belt to the factory.

Negligible amounts of packing material is used for raw materials and auxiliares received at Leca Danmark A/S so the potential environmental impacts from packing is not included. Furthermore the final product Leca® 0,5-2,5 is sold in bulk, so no packing is used.

Materials	Value	Unit
Clay	93	%
Waste/bio raw materials	7	%
Lime	< 0,5	%

Technical data:

Loose bulk density (Test method: EN 1097-3): 0,315 ton/m3 Reaction to fire: A1

Market:

Denmark.

Reference service life, product

Not relevant.

Reference service life, building or construction works

Not relevant.

LCA: Calculation rules

Declared unit:

1 m3 Leca® 0,5-2,5, Leca Denmark

Cut-off criteria:

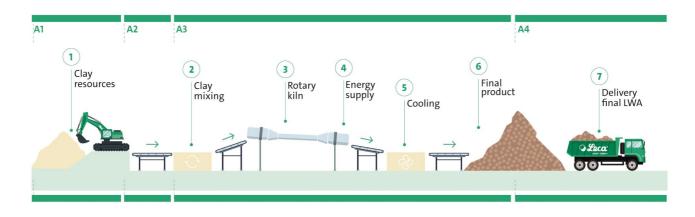
All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804+A2. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.


Materials	Source	Data quality	Year
Additives	ecoinvent 3.6	Database	2019
Binder	ecoinvent 3.6	Database	2019
Clay	LCA.no	Database	2021
Dolomite	ecoinvent 3.6	Database	2019
Waste products	LCA.no	Database	2021

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Product st	ige		uction ion stage		Use stage					End of life stage				Beyond the system boundaries	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х	Х	Х

System boundary:

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6 (km)	53,3 %	50	0,023	l/tkm	1,15
Assembly (A5)	Unit	Value			
Blowing, Machine operation, diesel, > 18.64 kW (per hour)	h/DU	0,03			
Vibrating plate (per liter diesel)	L/DU	0,01			
Crane, Machine operation, diesel, >=74.57 kW (per hour)	h/DU	0,01			
Bulldozer, Machine operation, diesel, >=74.57 kW (per hour)	h/DU	0,02			
De-construction demolition (C1)	Unit	Value			
Removal of LWA, Machine operation, diesel, >= 74.57 kW (per hour)	h/DU	0,04			
Sorting per kg of LWA, for waste treatment after removal (kg)	kg/DU	315,00			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 5 (km)	36,7 %	50	0,044	l/tkm	2,20
Waste processing (C3)	Unit	Value			
Waste treatment, reuse of LWA (kg)	kg	236,25			
Disposal (C4)	Unit	Value			
Disposal, landfilling of waste LWA (kg)	kg	78,75			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of primary expanded clay (kg)	kg	236,25			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Envir	Environmental impact												
	Indicator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D	
P	GWP-total	kg CO ₂ - eq	2,73E+00	2,05E+00	4,93E+01	1,37E+00	1,27E+00	8,67E-01	2,63E+00	0,00E+00	6,47E-01	-5,93E+01	
P	GWP-fossil	kg CO ₂ - eq	2,73E+00	2,04E+00	4,78E+01	1,37E+00	1,27E+00	8,67E-01	2,63E+00	0,00E+00	6,46E-01	-5,92E+01	
P	GWP-biogenic	kg CO ₂ - eq	2,55E-03	8,46E-04	1,42E+00	5,88E-04	2,39E-04	1,61E-04	1,07E-03	0,00E+00	7,54E-04	-1,46E-01	
P	GWP-luluc	kg CO ₂ - eq	2,30E-04	7,27E-04	8,66E-03	4,18E-04	9,96E-05	6,79E-05	9,18E-04	0,00E+00	1,59E-04	-2,31E-02	
Ò	ODP	kg CFC11 - eq	1,08E-06	4,63E-07	1,06E-06	3,31E-07	2,73E-07	1,86E-07	5,99E-07	0,00E+00	2,45E-07	-3,48E-06	
(See	AP	mol H+ -eq	7,41E-03	5,87E-03	3,09E+02	4,42E-03	5,70E-03	3,16E-03	1,07E-02	0,00E+00	5,75E-03	-4,72E-01	
÷	EP-FreshWater	kg P -eq	8,19E-06	1,63E-05	2,20E-04	1,09E-05	4,60E-06	3,13E-06	2,06E-05	0,00E+00	7,32E-06	-2,94E-03	
÷	EP-Marine	kg N -eq	1,20E-03	1,16E-03	1,62E+02	9,67E-04	2,09E-03	1,05E-03	3,18E-03	0,00E+00	2,13E-03	-5,90E-02	
÷	EP-Terrestial	mol N - eq	1,35E-02	1,30E-02	1,78E+03	1,08E-02	2,31E-02	1,16E-02	3,52E-02	0,00E+00	2,36E-02	-7,11E-01	
	РОСР	kg NMVOC -eq	5,23E-03	4,98E-03	4,17E+02	4,24E-03	6,70E-03	3,56E-03	1,08E-02	0,00E+00	6,74E-03	-1,92E-01	
-5D	ADP- minerals&metals ¹	kg Sb- eq	2,09E-06	5,65E-05	5,13E-05	2,44E-05	1,94E-06	1,32E-06	7,11E-05	0,00E+00	5,82E-06	-7,83E-04	
B	ADP-fossil ¹	MJ	6,72E+01	3,09E+01	2,04E+02	2,23E+01	1,74E+01	1,18E+01	3,96E+01	0,00E+00	1,78E+01	-6,00E+02	
6	WDP ¹	m ³	3,17E+02	2,99E+01	-1,42E+02	1,71E+01	3,70E+00	2,52E+00	3,78E+01	0,00E+00	1,10E+02	-1,11E+03	

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Remarks to environmental impacts

Due to polluter-pay-principle, the emissions from waste are not included. Biogenic carbon from biofuels are balanced to zero since they have their input and output in the same module.

Addi	tional e	environmental i	mpact indi	cators								
Ind	icator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
	PM	Disease incidence	1,84E-08	1,25E-07	6,81E-04	1,26E-07	9,99E-08	6,20E-08	1,89E-07	0,00E+00	1,23E-07	-4,39E-06
	IRP ²	kgBq U235 -eq	3,05E-01	1,35E-01	3,95E-01	9,74E-02	7,45E-02	5,08E-02	1,73E-01	0,00E+00	8,11E-02	-1,25E+00
	ETP-fw ¹	CTUe	4,06E+01	2,29E+01	4,50E+02	1,63E+01	9,52E+00	6,48E+00	2,92E+01	0,00E+00	9,70E+00	-1,45E+03
	HTP-c ¹	CTUh	1,96E-10	0,00E+00	7,88E-09	0,00E+00	1,08E-09	7,22E-10	0,00E+00	0,00E+00	3,94E-10	-2,65E-08
4 <u>6</u>	HTP-nc ¹	CTUh	1,77E-08	2,50E-08	2,24E-07	1,58E-08	8,04E-09	5,15E-09	3,15E-08	0,00E+00	7,01E-09	-7,17E-07
	SQP ¹	dimensionless	8,09E+00	2,16E+01	6,39E+02	2,55E+01	2,21E+00	1,50E+00	2,73E+01	0,00E+00	6,84E+01	-8,35E+02

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource	e use											
	licator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
ir S	PERE	MJ	1,03E+00	4,42E-01	2,10E+02	2,80E-01	9,41E-02	6,41E-02	5,59E-01	0,00E+00	6,36E-01	-1,63E+02
A	PERM	MJ	0,00E+00									
° ₽ 3	PERT	MJ	1,03E+00	4,42E-01	2,10E+02	2,80E-01	9,41E-02	6,41E-02	5,59E-01	0,00E+00	6,36E-01	-1,63E+02
B	PENRE	MJ	6,71E+01	3,09E+01	2,04E+02	2,23E+01	1,74E+01	1,18E+01	3,96E+01	0,00E+00	1,78E+01	-6,00E+02
.År	PENRM	MJ	0,00E+00									
IA	PENRT	MJ	6,71E+01	3,09E+01	2,04E+02	2,23E+01	1,74E+01	1,18E+01	3,96E+01	0,00E+00	1,78E+01	-6,00E+02
	SM	kg	3,45E+01	0,00E+00	0,00E+00	0,00E+00	8,54E-03	5,82E-03	0,00E+00	0,00E+00	0,00E+00	-8,87E-01
2	RSF	MJ	1,59E-02	1,58E-02	6,73E+02	9,80E-03	2,32E-03	1,58E-03	2,00E-02	0,00E+00	1,32E-02	-4,29E+00
Ū.	NRSF	MJ	1,44E-02	5,66E-02	2,32E+02	3,29E-02	3,41E-02	2,32E-02	7,14E-02	0,00E+00	2,85E-02	-3,36E+00
\$	FW	m ³	3,20E-03	3,31E-03	2,34E-01	2,54E-03	8,95E-04	6,10E-04	4,17E-03	0,00E+00	2,19E-02	-3,99E-01

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources; SENRE = Use of non renewable primary energy resources; SENRE = Use of secondary materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RERT = Total use of non renewable primary energy resources; SM = Use of secondary materials; RERT = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of lif	fe - Waste											
Ind	licator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
A	HWD	kg	1,12E-03	1,59E-03	2,86E+00	1,22E-03	5,12E-04	3,49E-04	2,02E-03	0,00E+00	0,00E+00	-6,61E-02
Ū	NHWD	kg	2,76E-02	1,50E+00	3,71E+00	1,94E+00	2,06E-02	1,40E-02	1,89E+00	0,00E+00	7,88E+01	-4,17E+00
æ	RWD	kg	4,86E-04	2,11E-04	3,87E-04	1,52E-04	1,21E-04	8,22E-05	2,70E-04	0,00E+00	0,00E+00	-1,78E-03

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

En	nd of life - Output flow													
	Indica	tor	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D	
	\otimes	CRU	kg	0,00E+00										
	\$\$D	MFR	kg	0,00E+00	0,00E+00	1,62E-01	0,00E+00	8,26E-03	5,71E-03	0,00E+00	2,36E+02	0,00E+00	-7,20E-01	
	\square	MER	kg	0,00E+00	0,00E+00	1,24E+01	0,00E+00	1,55E-04	1,77E-05	0,00E+00	0,00E+00	0,00E+00	-4,31E-02	
	5D	EEE	MJ	0,00E+00	0,00E+00	7,33E+00	0,00E+00	8,92E-05	6,07E-05	0,00E+00	0,00E+00	0,00E+00	-9,38E-02	
	DU	EET	MJ	0,00E+00	0,00E+00	1,11E+02	0,00E+00	1,35E-03	9,19E-04	0,00E+00	0,00E+00	0,00E+00	-1,42E+00	

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content											
Indicator	Unit	At the factory gate									
Biogenic carbon content in product	kg C	0,00E+00									
Biogenic carbon content in accompanying packaging	kg C	0,00E+00									

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Renewable electricity Saint-Gobain, based on 100% hydro power, with Guarantee of Origin from LOS 2021 (kWh)	ecoinvent 3.6	4,26	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Additional Environmental Information

Additional e	Additional environmental impact indicators required in NPCR Part A for construction products											
Indicator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D	
GWPIOBC	kg CO ₂ -eq	2,72E+00	2,05E+00	4,92E+01	1,37E+00	1,99E-01	1,98E-01	2,63E+00	0,00E+00	0,00E+00	-5,93E+01	

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products. ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

. ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Vold et. al., (2022) EPD generator for NPCR 012 Thermal insulation, Background information for EPD generator application and LCA data, LCA.no report number: 07.22.

NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge.

NPCR 012 Part B for Part B for Thermal insulation products, Ver. 2.0, 31.03.2022, EPD Norway.

🕲 epd-norge	Program operator and publisher	Phone: +47 977 22 020
	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
SAINT-GOBAIN	Owner of the declaration:	Phone: (+351) 962 303 517
	Leca International	e-mail: gobain.com
	Årnesvegen 1, 2009 Nordby	web: www.leca.no
	Author of the Life Cycle Assessment	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
	Dokka 6A, 1671 Kråkerøy	web: www.lca.no
	Developer of EPD generator	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
	Dokka 6A, 1671 Kråkerøy	web: www.lca.no
	ECO Platform	web: www.eco-platform.org
	ECO Portal	web: ECO Portal