

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

IFSI-EMC Pure 1kV 3x16/16mm² FR

The Norwegian EPD Foundation

Owner of the declaration: Prysmian Group Norge AS

Product: IFSI-EMC Pure 1kV 3x16/16mm² FR

Declared unit: 1 m

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 027:2020 Part B for Electrical cables and wires **Program operator:** The Norwegian EPD Foundation

Declaration number:

NEPD-7430-6824-EN

Registration number:

NEPD-7430-6824-EN

Issue date: 04.09.2024

Valid to: 04.09.2029

EPD software: LCAno EPD generator ID: 524251

General information

Product

IFSI-EMC Pure 1kV 3x16/16mm² FR

Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-7430-6824-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 027:2020 Part B for Electrical cables and wires

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 m IFSI-EMC Pure 1kV 3x16/16mm² FR

Declared unit with option:

A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, B6, B7, C1, C2, C3, C4, D

Functional unit:

1 m of installed IFSI-EMC Pure 1kV 3x16/16mm² FR used to transmit a reference electric current of 1A over 40 years, including waste treatment at end-of-life

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Approval number: NEPDT32.

Third party verifier:

Vito D'Incognito, Take Care International

(no signature required)

Owner of the declaration:

Prysmian Group Norge AS Contact person: Anders Nymark Phone: +47 90066733 e-mail: anders.nymark@prysmiangroup.com

Manufacturer:

Prysmian Group Norge AS Kjerraten 16 3013 Drammen, Norway

Place of production:

Prysmian Group production site Oulu (Finland) Johdintie 5 90630 Oulu, Finland

Management system:

ISO 9001, ISO 14001, ISO 45001

Organisation no:

814 780 422

Issue date:

04.09.2024

Valid to: 04.09.2029

Year of study:

2023

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway. Approval number: NEPDT33

Developer of EPD: Siri Andersen

Reviewer of company-specific input data and EPD: Anders Nymark

Approved:

Håkon Hauan

Håkon Hauan Managing Director of EPD-Norway

Product

Product description:

IFSI-EMC PURE 1KV CU

Power cable with up to 1 kV operating voltage. Allowed indoors, outdoors and as a ground cable without extra protection. The Cu screen is 100% tight, has low coupling impedance and meets the EMC directive. The 3-conductor is symmetrically constructed and has a CU screen from 1.5mm². Halogen-free cable is recommended used when it is important to avoid the formation of dense smoke and corrosive gases in the event of an overheating or fire.

Product specification

Conductor material Copper Conductor surface: Bare Core insulation material: XLPE Armoring material: Copper, bare Screen construction: Metallized foil Screen material: Copper, bare Concentric conductor: Copper Material inner sheath: Halogen-free polymer Material outer sheath: Halogen-free polymer Cable shape: Round

Materials	kg	%		
Copper foil, with plastic	0,01	1,28		
HFFR Polyolefin	0,31	33,58		
Kraft paper - Bleached	0,00	0,21		
Metal - Copper	0,55	59,24		
Plastic - Polyethylene	0,05	4,90		
Plastic compound - Halogen free polymer	0,00	0,53		
Tape - Polyester	0,00	0,21		
Textile - Polyester (PE)	0,00	0,06		
Total	0,93	100,00		

Technical data:

IFSI-EMC Pure 1kV 3x16/16mm² FR SAP code: 20216066 El no. 1003815

STANDARDS APPLIED:

HD 604-5D Construction IEC 60502-1 Construction IEC 60228 Class 1 or Class 2 Conductors EN 50575:2014 + A1:2016 CPR standard - Fire properties EN 60754-1 and EN 60754-2 Halogen free properties: EN 60754-1 (pH = 4,3, Conductivity = 10µS), EN 60754-2 (< 0,5% Halogen) IEC 61034-1, -2 Low smoke properties: IEC 61034-1, -2 (minimum 60% light transmittance)

Market:

Norway

Reference service life, product

40 years. Standard lifetime for energy distribution network applications, provided in appendix 1 of PSR for wires, cables, and accessories of PEP Ecopassport.

Reference service life, building or construction works

40 years. Estimation made to match the product service life and keep the EPD environmental impact calculations at the product level

LCA: Calculation rules

Declared unit:

1 m IFSI-EMC Pure 1kV 3x16/16mm² FR

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

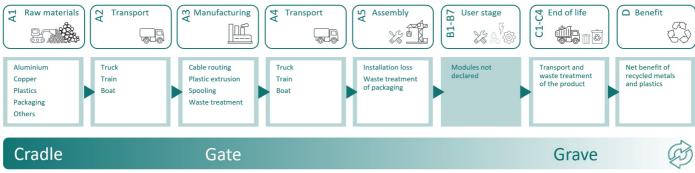
Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Copper foil, with plastic	ecoinvent 3.6	Database	2019
HFFR Polyolefin	ecoinvent 3.6	Database	2019
Kraft paper - Bleached	ecoinvent 3.6	Database	2019
Metal - Copper	ecoinvent 3.6	Database	2019
Metal - Copper	Modified ecoinvent 3.6	Database	2019
Plastic - Polyethylene	ecoinvent 3.6	Database	2019
Plastic compound - Halogen free polymer	Product composition + ecoinvent 3.6	Supplier data + database	2019
Tape - Polyester	ecoinvent 3.6	Database	2019
Textile - Polyester (PE)	Modified ecoinvent 3.6	Database	2019



System boundaries (X=included, MND=module not declared, MNR=module not relevant)

P	Product stag	ge	Constr installati		Use stage End of life stage				Beyond the system boundaries							
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Mainten an ce	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

System boundary:

The flowchart below illustrates the system boundaries of the analysis:

Additional technical information:

Test voltage [kV] 3.5 Rated voltage U0/U (Um) 0.6/1 (1.2) kV Flame retardant Yes Halogen free acc. IEC/EN 60754-1/2 Low smoke acc. IEC/EN 61034-2 Reaction-to-fire class (acc. EN 13501-6) Dca Smoke development class (acc. EN 13501-6) s2 Euro class flaming droplets/particles (acc. EN 13501-6) d2 Euro class acidity (acc. EN 13501-6) a1 Max. conductor temperature [°C] 90 Min. outer temperature, fixed installation [°C] -40 Max. outer temperature, fixed installation [°C] 70 Low temperature resistant (acc. EN 60811-504+505+506) Yes UV resistant Yes Outdoor installation Yes Underground installation Yes Suitable as installation cable Yes Bending radius (rule) 8xD

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Module A4 = A distance of 1445 km from Prysmian Group production plant in Oulu to warehouse in Loesmoen + an additional average transport of 300 km to market is considered.

Modules A5 = 2% product losses during installation are estimated by the company. No energy use for installation has been quantified since this operation is assumed to be done with other products and should be assessed at a construction works level. Cable drums are reused and assumed under the cut-off criterion of 1%.

Modules B1, B2, B3, B4, B5, and B7 = Company data shows that no significant activities have been reported for use, maintenance, repair, replacement, refurbishment, and water use. This reflects an absence of impacts during the 40 years reference service life of the cable in these modules.

Module B6 = The operational energy use of the cable is calculated based on the methodology described in PEP Ecopassport, Product Specific Rules (PSR) for wires, cables and accessories, reference PSR-0001-ed3-EN-2015 10 16. The following parameters are used to calculate the electricity loss of the cable:

- Estimate service life = 40 years
- Number of conductors = 3 units
- Use rate = 100 percent (according to appendix 1 of the PSR)
- Linear conductor resistivity = 0,001125 Ohm per meter
- Current intensity = 1 Ampere

Module C1 = For both buildings and construction works, cables will be taken out as part of a larger demolition. The energy use for cable removal compared to other heavier materials is assumed to be low. This module can therefore be included with zero impact.

Module C2 = An average distance between the market and the waste treatment facility is considered.

Modules C3 and C4 = Waste treatment of the product follows the default values provided in EN 50693, Product Category Rules for life cycle assessments of electronic and electrical products and systems, table G.4. This table specified how different types of raw materials used in A1 will likely be treated during the end-of-life of the product. Waste treatments in C3 include material recycling and incineration with and without energy recovery and fly ash extraction. Disposal in C4 consist of landfilling of different waste fractions and of ashes.

Module D = The recyclability of metals and plastics allows the producers a credit for the net scrap that is produced at the end of a product's life. The benefits from recycling of net scrap are described in formula from EN 15804:2012+A2:2019. Substitution of heat and electricity generated by the incineration with energy recovery of plastic insulation and other parts is also calculated in module D.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 5 (km)	53,3 %	1745	0,023	l/tkm	40, 14
Assembly (A5)	Unit	Value			
Product loss during installation (percentage of cable)	Units/DU	0,02			
Operational energy (B6)	Unit	Value			
Electricity, Norway (kWh)	kWh/DU	1,18			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 5 (km)	36,7 %	300	0,044	l/tkm	13,20
Waste processing (C3)	Unit	Value			
Copper to recycling (kg)	kg	0,33			
Waste treatment of non-hazardous waste, incineration with energy recovery and fly ash extraction (kg)	kg	0,01			
Waste treatment of plastic mixture, incineration with energy recovery and fly ash extraction (kg)	kg	0,16			
Waste treatment of polyethylene (PE), incineration with energy recovery and fly ash extraction (kg)	kg	0,02			

Disposal (C4)	Unit	Value		
Landfilling of ashes from incineration of Non- hazardous waste, process per kg ashes and residues (kg)	kg	0,01		
Landfilling of ashes from incineration of Plastic mixture, process per kg ashes and residues (kg)	kg	0,01		
Landfilling of ashes from incineration of Polyethylene (PE), process per kg ashes and residues (kg)	kg	0,00		
Landfilling of copper (kg)	kg	0,22		
Landfilling of graphical paper waste (kg)	kg	0,00		
Landfilling of plastic mixture (kg)	kg	0, 18		

Benefits and loads beyond the system boundaries (D)	Unit	Value		
Substitution of electricity (MJ)	MJ	0,29		
Substitution of primary copper with net scrap (kg)	kg	0,07		
Substitution of thermal energy, district heating (MJ)	MJ	4,46		

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Envir	onmental impact											
	Indicator			Unit	A1	A2	A3	A4	A5	B1	B2	B3
P	GWP-total		kg	CO ₂ -eq	3,21E+00	2,43E-01	5,58E-02	1,48E-01	8,12E-02	0	0	0
P	GWP-fossil		kg	CO ₂ -eq	3,16E+00	2,43E-01	5,11E-02	1,48E-01	7,98E-02	0	0	0
P	GWP-biogenic	:	kg	CO ₂ -eq	4,26E-02	8,24E-05	4,66E-03	6,06E-05	1,27E-03	0	0	0
P	GWP-luluc		kg	CO ₂ -eq	3,41E-03	1,16E-04	7,01E-05	4,31E-05	7,24E-05	0	0	0
Ò	ODP		kg (CFC11 -eq	2,24E-07	5,24E-08	4,66E-08	3,41E-08	6,82E-09	0	0	0
Ê	AP		mc	ol H+ -eq	1,45E-01	4,38E-03	3,83E-04	6,21E-04	3,01E-03	0	0	0
	EP-FreshWater		k	g P -eq	1,22E-03	1,46E-06	1,77E-06	1,13E-06	2,45E-05	0	0	0
	EP-Marine		k	g N -eq	8,78E-03	1,15E-03	1,20E-04	1,87E-04	2,05E-04	0	0	0
	EP-Terrestial		m	ol N -eq	1,29E-01	1,28E-02	1,34E-03	2,06E-03	2,89E-03	0	0	0
	РОСР		kg N	MVOC -eq	3,35E-02	3,37E-03	3,18E-04	6,64E-04	7,55E-04	0	0	0
ьÐ	ADP-minerals&me	etals ¹	k	g Sb-eq	1,05E-03	4,29E-06	1,54E-06	2,52E-06	2,11E-05	0	0	0
A	ADP-fossil ¹			MJ	4,69E+01	3,41E+00	1,11E+01	2,30E+00	1,25E+00	0	0	0
%	WDP ¹			m ³	1,76E+02	2,15E+00	5,34E+00	1,76E+00	3,74E+00	0	0	0
						,		,				
	Indicator	Un	it	B4	B5	B6	B7	C1	C2	C3	C4	D
P	Indicator GWP-total	Un kg CO			B5 0							
			₂ -eq	B4		B6	Β7	C1	C2	C3	C4	D
P	GWP-total	kg CO	₂ -eq ₂ -eq	B4 0	0	B6 2,88E-02	B7 0	C1 0,00E+00	C2 4,66E-02	C3 4,61E-01	C4 2,72E-02	D - 1,86E-01
P P	GWP-total GWP-fossil	kg CO kg CO	₂ -eq ₂ -eq ₂ -eq	B4 0 0	0	B6 2,88E-02 2,79E-02	B7 0 0	C1 0,00E+00 0,00E+00	C2 4,66E-02 4,66E-02	C3 4,61E-01 4,48E-01	C4 2,72E-02 2,41E-02	D -1,86E-01 -1,84E-01
P P P	GWP-total GWP-fossil GWP-biogenic	kg CO kg CO kg CO	₂ -eq ₂ -eq ₂ -eq ₂ -eq	B4 0 0 0	0 0 0	B6 2,88E-02 2,79E-02 7,71E-04	B7 0 0 0	C1 0,00E+00 0,00E+00 0,00E+00	C2 4,66E-02 4,66E-02 1,90E-05	C3 4,61E-01 4,48E-01 1,28E-02	C4 2,72E-02 2,41E-02 3,08E-03	D -1,86E-01 -1,84E-01 -7,90E-04
	GWP-total GWP-fossil GWP-biogenic GWP-luluc	kg CO kg CO kg CO kg CO	2 -eq 2 -eq 2 -eq 2 -eq 2 -eq 11 -eq	B4 0 0 0 0	0 0 0 0	B6 2,88E-02 2,79E-02 7,71E-04 1,15E-04	B7 0 0 0 0	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 4,66E-02 4,66E-02 1,90E-05 1,63E-05	C3 4,61E-01 4,48E-01 1,28E-02 1,65E-06	C4 2,72E-02 2,41E-02 3,08E-03 1,67E-06	D -1,86E-01 -1,84E-01 -7,90E-04 -1,06E-03
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP	kg CO kg CO kg CO kg CO	2 -eq 2 -eq 2 -eq 2 -eq 11 -eq + -eq	B4 0 0 0 0 0	0 0 0 0 0	B6 2,88E-02 2,79E-02 7,71E-04 1,15E-04 1,91E-09	B7 0 0 0 0 0	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 4,66E-02 4,66E-02 1,90E-05 1,63E-05 1,06E-08	C3 4,61E-01 4,48E-01 1,28E-02 1,65E-06 8,92E-10	C4 2,72E-02 2,41E-02 3,08E-03 1,67E-06 1,48E-09	D -1,86E-01 -1,84E-01 -7,90E-04 -1,06E-03 -1,88E-03
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP	kg CO kg CO kg CO kg CFC mol H	2 -eq 2 -eq 2 -eq 11 -eq + -eq -eq	B4 0 0 0 0 0 0	0 0 0 0 0 0	B6 2,88E-02 2,79E-02 7,71E-04 1,15E-04 1,91E-09 2,18E-04	B7 0 0 0 0 0 0 0	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 4,66E-02 4,66E-02 1,90E-05 1,63E-05 1,06E-08 1,90E-04	C3 4,61E-01 4,48E-01 1,28E-02 1,65E-06 8,92E-10 9,32E-05	C4 2,72E-02 2,41E-02 3,08E-03 1,67E-06 1,48E-09 3,94E-05	D -1,86E-01 -1,84E-01 -7,90E-04 -1,06E-03 -1,88E-03 -2,68E-02
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater	kg CO kg CO kg CO kg CFC mol H kg P	2 -eq 2 -eq 2 -eq 11 -eq + -eq -eq	B4 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	B6 2,88E-02 2,79E-02 7,71E-04 1,15E-04 1,91E-09 2,18E-04 2,01E-06	B7 0 0 0 0 0 0 0 0	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 4,66E-02 4,66E-02 1,90E-05 1,63E-05 1,06E-08 1,90E-04 3,66E-07	C3 4,61E-01 4,48E-01 1,28E-02 1,65E-06 8,92E-10 9,32E-05 8,00E-08	C4 2,72E-02 2,41E-02 3,08E-03 1,67E-06 1,48E-09 3,94E-05 7,89E-08	D -1,86E-01 -1,84E-01 -7,90E-04 -1,06E-03 -1,88E-03 -2,68E-02 -1,82E-04
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine	kg CO kg CO kg CO kg CFC mol H kg P kg N	2 -eq 2 -eq 2 -eq 11 -eq + -eq -eq I -eq	B4 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	B6 2,88E-02 2,79E-02 7,71E-04 1,15E-04 1,91E-09 2,18E-04 2,01E-06 2,40E-05	B7 0 0 0 0 0 0 0 0 0	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 4,66E-02 4,66E-02 1,90E-05 1,63E-05 1,06E-08 1,90E-04 3,66E-07 5,64E-05	C3 4,61E-01 4,48E-01 1,28E-02 1,65E-06 8,92E-10 9,32E-05 8,00E-08 4,45E-05	C4 2,72E-02 2,41E-02 3,08E-03 1,67E-06 1,48E-09 3,94E-05 7,89E-08 3,97E-05	D -1,86E-01 -1,84E-01 -7,90E-04 -1,06E-03 -1,88E-03 -2,68E-02 -1,82E-04 -1,16E-03
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine EP-Terrestial	kg CO kg CO kg CO kg CFC mol H kg P kg N mol N	2 -eq 2 -eq 2 -eq 11 -eq + -eq -eq 1 -eq 1 -eq 0C -eq	B4 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	B6 2,88E-02 2,79E-02 7,71E-04 1,15E-04 1,91E-09 2,18E-04 2,01E-06 2,40E-05 3,12E-04	B7 0 0 0 0 0 0 0 0 0 0 0	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 4,66E-02 4,66E-02 1,90E-05 1,63E-05 1,06E-08 1,90E-04 3,66E-07 5,64E-05 6,24E-04	C3 4,61E-01 4,48E-01 1,28E-02 1,65E-06 8,92E-10 9,32E-05 8,00E-08 4,45E-05 4,59E-04	C4 2,72E-02 2,41E-02 3,08E-03 1,67E-06 1,48E-09 3,94E-05 7,89E-08 3,97E-05 1,58E-04	D -1,86E-01 -1,84E-01 -7,90E-04 -1,06E-03 -1,88E-03 -2,68E-02 -1,82E-04 -1,16E-03 -1,77E-02
	GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine EP-Terrestial POCP	kg CO kg CO kg CO kg CC mol H- kg P kg N mol N	2 -eq 2 -eq 2 -eq 11 -eq + -eq -eq 1 -eq 0C -eq 0-eq	B4 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	B6 2,88E-02 2,79E-02 7,71E-04 1,15E-04 1,91E-09 2,18E-04 2,01E-06 2,40E-05 3,12E-04 8,38E-05	B7 0 0 0 0 0 0 0 0 0 0 0 0 0	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 4,66E-02 1,90E-05 1,63E-05 1,06E-08 1,90E-04 3,66E-07 5,64E-05 6,24E-04 1,91E-04	C3 4,61E-01 1,28E-02 1,65E-06 8,92E-10 9,32E-05 8,00E-08 4,45E-05 4,59E-04 1,11E-04	C4 2,72E-02 2,41E-02 3,08E-03 1,67E-06 1,48E-09 3,94E-05 7,89E-08 3,97E-05 1,58E-04 5,00E-05	D -1,86E-01 -7,90E-04 -1,06E-03 -1,68E-02 -2,68E-02 -1,82E-04 -1,16E-03 -1,77E-02 -4,81E-03

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Remarks to environmental impacts

Additic	onal enviro	onme	ntal impact ind	icators								
	Indicator		Unit		A1	A2	A3	A4	A5	B1	B2	B3
	PM		Disease incidence		3,86E-07	1,25E-08	5,67E-09	1,30E-08	8,22E-09	0	0	0
(m) 2	IRP ²		kgBq U23	5 -eq	1,74E-01	1,48E-02	4,90E-01	1,00E-02	1,37E-02	0	0	0
	ETP-fv	v ¹	CTUe		1,61E+03	2,27E+00	3,97E+00	1,68E+00	3,50E+01	0	0	0
46.* ****	HTP-c	1	CTUh		3,03E-08	0,00E+00	8,40E-11	0,00E+00	6,09E-10	0	0	0
4 <u>5</u>	HTP-n	c ¹	CTUh		2,30E-06	2,59E-09	2,06E-09	1,62E-09	4,61E-08	0	0	0
	SQP ¹	l	dimension	nless	3,16E+01	1,54E+00	4,11E+00	2,63E+00	7,71E-01	0	0	0
Inc	dicator		Unit	B4	B5	B6	B7	C1	C2	C3	C4	D
	PM	Di	sease incidence	0	0	1,56E-09	0	0,00E+00	3,35E-09	4,10E-10	7,21E-10	-6,61E-08
(m) Q	IRP ²	k	kgBq U235 -eq	0	0	6,91E-03	0	0,00E+00	3,07E-03	1,41E-04	7,02E-04	-4,12E-03
	ETP-fw ¹		CTUe	0	0	1,73E+00	0	0,00E+00	5,17E-01	8,26E-01	1,37E+02	-2,47E+02
46.* ****	HTP-c ¹		CTUh	0	0	8,30E-11	0	0,00E+00	0,00E+00	2,30E-11	7,00E-12	-3,49E-09
88 E	HTP-nc ¹		CTUh	0	0	1,95E-09	0	0,00E+00	5,59E-10	1,07E-09	1,45E-10	-2,98E-07
	SQP ¹	(dimensionless	0	0	1,92E-01	0	0,00E+00	4,84E-01	1,02E-02	2,90E-01	-5,58E+00

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

esource use											
	Indicator		Unit	A1	A2	A3	A4	A5	B1	B2	B3
î, S	PERE		MJ	8,79E+00	3,68E-02	8,70E-01	2,89E-02	1,95E-01	0	0	0
B	PERM	1	MJ	2,94E-02	0,00E+00	0,00E+00	0,00E+00	2,37E-05	0	0	0
°F1	PERT		MJ	8,82E+00	3,68E-02	8,70E-01	2,89E-02	1,95E-01	0	0	0
B	PENR	E	MJ	4,00E+01	3,41E+00	1,11E+01	2,30E+00	1,11E+00	0	0	0
.Åø	PENR	M	MJ	7,10E+00	0,00E+00	0,00E+00	0,00E+00	1,23E-02	0	0	0
IA	PENR	г	MJ	4,71E+01	3,41E+00	1,11E+01	2,30E+00	1,13E+00	0	0	0
	SM		kg	1,23E-01	0,00E+00	1,77E-03	0,00E+00	2,49E-03	0	0	0
×.	RSF		MJ	1,85E-01	1,22E-03	7,22E-04	1,01E-03	3,75E-03	0	0	0
	NRSF		MJ	9,01E-03	3,54E-03	8,59E-04	3,39E-03	3,03E-04	0	0	0
\$6	FW		m ³	1,32E-01	2,77E-04	3,93E-03	2,61E-04	2,74E-03	0	0	0
	dicator										
î, î		Unit	B4	B5	B6	B7	C1	C2	C3	C4	D
I	PERE	MJ	В4 0	B5 0	B6 4,93E+00	B7 0	C1 0,00E+00	C2 9,91E-03	C3 3,09E-03	C4 1,23E-02	
	PERE	MJ	0	0	4,93E+00	0	0,00E+00	9,91E-03	3,09E-03	1,23E-02	-2,85E+00
A	PERE PERM	M) M)	0 0	0 0	4,93E+00 0,00E+00	0	0,00E+00 0,00E+00	9,91E-03 0,00E+00	3,09E-03 -2,82E-02	1,23E-02 0,00E+00	-2,85E+00 0,00E+00 -2,85E+00
A	PERE PERM PERT	M) M)	0 0 0	0 0 0	4,93E+00 0,00E+00 4,93E+00	0 0 0	0,00E+00 0,00E+00 0,00E+00	9,91E-03 0,00E+00 9,91E-03	3,09E-03 -2,82E-02 -2,52E-02	1,23E-02 0,00E+00 1,23E-02	-2,85E+00 0,00E+00 -2,85E+00 -1,78E+00
i final Anti- Anta	PERE PERM PERT PENRE	M1 M1 M1 M1	0 0 0 0	0 0 0 0	4,93E+00 0,00E+00 4,93E+00 3,81E-01	0 0 0 0	0,00E+00 0,00E+00 0,00E+00 0,00E+00	9,91E-03 0,00E+00 9,91E-03 7,02E-01	3,09E-03 -2,82E-02 -2,52E-02 5,77E-02	1,23E-02 0,00E+00 1,23E-02 1,17E-01	-2,85E+00
	PERE PERM PERT PENRE PENRM	rw rw rW rW rW	0 0 0 0	0 0 0 0	4,93E+00 0,00E+00 4,93E+00 3,81E-01 0,00E+00	0 0 0 0	0,00E+00 0,00E+00 0,00E+00 0,00E+00 -3,89E-02	9,91E-03 0,00E+00 9,91E-03 7,02E-01 0,00E+00	3,09E-03 -2,82E-02 -2,52E-02 5,77E-02 -6,44E+00	1,23E-02 0,00E+00 1,23E-02 1,17E-01 0,00E+00	-2,85E+00 0,00E+00 -2,85E+00 -1,78E+00 0,00E+00
	PERE PERM PERT PENRE PENRM PENRT	M M M M M M M	0 0 0 0 0	0 0 0 0 0	4,93E+00 0,00E+00 4,93E+00 3,81E-01 0,00E+00 3,81E-01	0 0 0 0 0	0,00E+00 0,00E+00 0,00E+00 0,00E+00 -3,89E-02 -3,89E-02	9,91E-03 0,00E+00 9,91E-03 7,02E-01 0,00E+00 7,02E-01	3,09E-03 -2,82E-02 -2,52E-02 5,77E-02 -6,44E+00 -6,39E+00	1,23E-02 0,00E+00 1,23E-02 1,17E-01 0,00E+00 1,17E-01	-2,85E+00 0,00E+00 -2,85E+00 -1,78E+00 0,00E+00 -1,78E+00
	PERE PERM PERT PENRE PENRM PENRT SM	MJ MJ MJ MJ MJ Kg	0 0 0 0 0 0 0	0 0 0 0 0 0 0	4,93E+00 0,00E+00 4,93E+00 3,81E-01 0,00E+00 3,81E-01 0,00E+00	0 0 0 0 0 0	0,00E+00 0,00E+00 0,00E+00 0,00E+00 -3,89E-02 -3,89E-02 0,00E+00	9,91E-03 0,00E+00 9,91E-03 7,02E-01 0,00E+00 7,02E-01 0,00E+00	3,09E-03 -2,82E-02 -2,52E-02 5,77E-02 -6,44E+00 -6,39E+00 0,00E+00	1,23E-02 0,00E+00 1,23E-02 1,17E-01 0,00E+00 1,17E-01 0,00E+00	-2,85E+00 0,00E+00 -2,85E+00 -1,78E+00 0,00E+00 -1,78E+00 4,63E-02

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; Secondary resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary materials; Rest = Use of non renewable primary energy resources; SM = Use of secondary materials; Rest = Use of renewable primary energy resources; SM = Use of non-renewable primary energy resources; SM = Use of secondary materials; Rest = Use of renewable secondary fuels; NRSF = Use of non-renewable primary energy resources; SM = Use of secondary fuels; Rest = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; NRSF = Use of non-renewable primary energy resources; SM = Use of secondary fuels; Rest = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; NRSF = Use of non-renewable primary energy resources; SM = Use of secondary fuels; Rest = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; NRSF =

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life -	Waste										
	Indicator		Unit	A1	A2	A3	A4	A5	B1	B2	B3
ß	HWD)	kg	2,40E-02	1,59E-04	1,03E-02	1,26E-04	9,99E-04	0	0	0
Ū	NHW	D	kg	1,09E+00	9,71E-02	5,60E-02	2,00E-01	3,46E-02	0	0	0
æ	RWD)	kg	1,56E-04	2,35E-05	1,89E-04	1,57E-05	7,51E-06	0	0	0
Ind	licator	Unit	B4	B5	B6	B7	C1	C2	C3	C4	D
Ā	HWD	kg	0	0	2,44E-04	0	0,00E+00	3,58E-05	0,00E+00	1,54E-02	-1,81E-03
Ī	NHWD	kg	0	0	2,93E-02	0	0,00E+00	3,35E-02	0,00E+00	4,10E-01	-8,51E-02
*	RWD	kg	0	0	3,41E-06	0	0,00E+00	4,79E-06	0,00E+00	8,02E-07	-3,53E-06

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Ou	utput flow										
In	dicator		Unit	A1	A2	A3	A4	A5	B1	B2	B3
$\otimes \triangleright$	CF	RU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0	0	0
 	MFR		kg	0,00E+00	0,00E+00	5,50E-02	0,00E+00	7,72E-03	0	0	0
DF	М	ER	kg	0,00E+00	0,00E+00	4,63E-02	0,00E+00	4,70E-03	0	0	0
50	E	E	MJ	0,00E+00	0,00E+00	3,10E-02	0,00E+00	6,52E-03	0	0	0
D	E	T	MJ	0,00E+00	0,00E+00	4,68E-01	0,00E+00	9,86E-02	0	0	0
Indicat	tor	Unit	B4	B5	B6	B7	C1	C2	C3	C4	D
$\otimes \triangleright$	CRU	kg	0	0	0,00E+00	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
\$	MFR	kg	0	0	0,00E+00	0	0,00E+00	0,00E+00	3,31E-01	1,64E-05	-1,81E-03
DF	MER	kg	0	0	0,00E+00	0	0,00E+00	0,00E+00	1,89E-01	4,01E-07	-2,39E-04
50	EEE	MJ	0	0	0,00E+00	0	0,00E+00	0,00E+00	2,95E-01	2,60E-05	-5,85E-04
DI	EET	MJ	0	0	0,00E+00	0	0,00E+00	0,00E+00	4,46E+00	3,94E-04	-8,85E-03

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content

Indicator	Unit	At the factory gate								
Biogenic carbon content in product	kg C	9,83E-04								
Biogenic carbon content in accompanying packaging	kg C	0,00E+00								

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity with guarantee of origin, high voltage, 100% nuclear, Finland (kWh)	ecoinvent 3.6	15,61	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products										
Indicator	Uni	t	A1	A2	A3	A4	A5	B1	B2	B3
GWPIOBC	kg CO ₂	-eq	3,20E+00	2,43E-01	5,49E-02	1,48E-01	8,09E-02	0	0	0
Indicator	Unit	B4	B5	B6	B7	C1	C2	C3	C4	D
GWPIOBC	kg CO ₂ -eq	0	0	2,87E-02	0	0,00E+00	4,66E-02	4,55E-01	2,84E-02	-1,02E-01

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010. Environmental labels and declarations - Type III environmental declarations - Principles and procedures. International Organization for Standardization.

ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines. International Organization for Standardization.

EN 15804:2012 + A2:2019. Environmental product declaration - Core rules for the product category of construction products. European Committee for Standardization.

ISO 21930:2017. Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products. International Organization for Standardization.

EN 50693:2019. Product category rules for life cycle assessments of electronic and electrical products and systems. European Committee for Standardization.

Ecoinvent v3, 2019. Allocation, cut-off by classification. Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021). eEPD v2021.09, background information for EPD generator tool system verification, LCA.no. Report number: 07.21. System verification report.

Philis et al., (2022). EPD generator for NPCR 027 part B for electrical wires and cables, background information for EPD generator application and LCA data, LCA.no Report number: 03.22. PCR verification report.

EPD Norway (2022). NPCR Part A: Construction products and services. The Norwegian EPD foundation. Version 2.0 published 24.03.2021. EPD Norway (2022). NPCR 027 Part B for electrical cables and wires. The Norwegian EPD foundation. Version 2.0 published 01.03.2022.

and norge	Program operator and publisher	Phone: +47 977 22 020
🕲 epd-norge	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
^	Owner of the declaration:	Phone: +47 90066733
긷 prysmian	Prysmian Group Norge AS	e-mail: anders.nymark@prysmiangroup.con
	Kjerraten 16, 3013 Drammen	web: www.prysmiangroup.no
LCAno	Author of the Life Cycle Assessment	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
	Dokka 6A, 1671 Kråkerøy	web: www.lca.no
LCA	Developer of EPD generator	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
.no	Dokka 6A, 1671 Kråkerøy	web: www.lca.no
	ECO Platform	web: www.eco-platform.org
	ECO Portal	web: ECO Portal