Environmental product declaration In accordance with ISO 14025 and EN15804+A2 High pressure grouting tool The Norwegian EPD Foundation ## Owner of the declaration: Pretec Norge AS #### **Product:** High pressure grouting tool ## **Declared unit:** 1 kg ## This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 013:2021 Part B for Steel and aluminium construction products # Program operator: The Norwegian EPD Foundation ## **Declaration number:** NEPD-4500-3762-EN # Registration number: NEPD-4500-3762-EN Issue date: 31.05.2023 Valid to: 31.05.2028 #### **EPD Software:** LCA.no EPD generator ID: 62787 ## **General information** #### **Product** High pressure grouting tool #### **Program operator:** Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00 web: post@epd-norge.no **Declaration number: NEPD-4500-3762-EN** #### This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 013:2021 Part B for Steel and aluminium construction products #### Statement of liability: The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. #### Declared unit: 1 kg High pressure grouting tool #### **Declared unit with option:** A1-A3,A4,A5,C1,C2,C3,C4,D #### **Functional unit:** 1 kg of High pressure grouting tool #### General information on verification of EPD from EPD tools: Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Individual third party verification of each EPD is not required when the EPD tool is i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPDNorway, and iii) the process is reviewed annualy. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools. ## **Verification of EPD tool:** Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Third party verifier: Alexander Borg, Asplan Viak AS (no signature required) #### Owner of the declaration: Pretec Norge AS Contact person: Ernad Sarajlija Phone: (+47) 69 10 24 60 e-mail: post@pretec.no #### Manufacturer: Pretec Norge AS #### Place of production: Pretec Norge AS Kampenesmosen 3 1739 Borgenhaugen, Norway ## Management system: ISO 14001 and ISO 9001, AAA Sertification AB, sert no 794 - EN 1090-1, AAA Sertification AB, sert no 2296 #### Organisation no: NO 980 429 245 MVA **Issue date:** 31.05.2023 Valid to: 31.05.2028 ## Year of study: 2023 # Comparability: EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context. #### **Development and verification of EPD:** The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway. Developer of EPD: Robert Johansson Reviewer of company-specific input data and EPD: Ernad Sarajlija ## Approved: Håkon Hauan Managing Director of EPD-Norway #### **Product** #### **Product description:** High pressure grouting tool High pressure grouting tool for mechanical mounting and injection of Pretec Packer type PSU-P and PMU. Can be used with handheld or hydraulic torque wrench for tightening of packer. Available in length from 1-6 meters and designed for working pressured up to 100 bar. Product is delivered with ball valve (PN 500) and hydraulic coupling (JIC 1 1/16") mounted on injection tool. Treads on injection tubes are lubricated upon delivery and protected by a plastic cap. Technical information: Tool consists of an injection tube (21x3,2 mm) surrounded by a protective sleeve. Injection tube is threaded (G 1/2") in both ends and welded to a threaded rod which enables axial movement of assembled tool by means of an M20x50 connection sleeve. Surface of tool is plain. #### **Product specification** High pressure grouting tool High pressure grouting tool for mechanical mounting and injection of Pretec Packer type PSU-P and PMU. Can be used with handheld or hydraulic torque wrench for tightening of packer. Available in length from 1-6 meters and designed for working pressured up to 100 bar. Product is delivered with ball valve (PN 500) and hydraulic coupling (JIC 1 1/16") mounted on injection tool. Treads on injection tubes are lubricated upon delivery and protected by a plastic cap. Technical information: Tool consists of an injection tube (21x3,2 mm) surrounded by a protective sleeve. Injection tube is threaded (G 1/2") in both ends and welded to a threaded rod which enables axial movement of assembled tool by means of an M20x50 connection sleeve. Surface of tool is plain. | Materials | kg | % | |--------------------|------|--------| | Metal - Steel | 1,00 | 100,00 | | Total | 1,00 | | | Packaging | kg | % | | | | ** | | Packaging - Pallet | 0.00 | 100,00 | #### Technical data: Carbon steel #### Market: Worldwide #### Reference service life, product Reference service life, building or construction works ## LCA: Calculation rules #### **Declared unit:** 1 kg High pressure grouting tool ## **Cut-off criteria:** All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances. #### Allocation: The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis. #### Data quality: Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below. | Materials | Source | Data quality | Year | |--------------------|------------------------|--------------|------| | Metal - Steel | ecoinvent 3.6 | Database | 2019 | | Packaging - Pallet | Modified ecoinvent 3.6 | Database | 2019 | # System boundaries (X=included, MND=module not declared, MNR=module not relevant) | P | roduct stag | je | | uction
on stage | | | | Use stage | | | | End of life stage | | | Beyond the system boundaries | | |------------------|-------------|---------------|-----------|--------------------|-----|-------------|--------|-------------|---------------|------------------------------|--------------------------|-----------------------------------|-----------|---------------------|------------------------------|--| | Raw
materials | Transport | Manufacturing | Transport | Assembly | Use | Maintenance | Repair | Replacement | Refurbishment | Operational
energy
use | Operational
water use | De-
construction
demolition | Transport | Waste
processing | Disposal | Reuse-Recovery-
Recycling-potential | | A1 | A2 | A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1 | C2 | C3 | C4 | D | | Х | Χ | Χ | Χ | X | MND Χ | Χ | Х | Χ | X | ## System boundary: This EPD is a "cradle-to-gate with options" EPD. The system boundary for this LCA report is from A1 to A5, C1-C4 and D Additional technical information: # LCA: Scenarios and additional technical information The following information describe the scenarios in the different modules of the EPD. Module C "End of life stage" is a generic scenario for decommissioning of construction. Subject to project specific conditions. Grade of recycling for different steel grades is based on statistics obtained from Norsk Stålforbund. | Transport from production place to user (A4) | Capacity utilisation
(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit | Value
(Liter/tonne) | |---|--|---------------|-------------------------|-------|------------------------| | Ship, Coastal Barge (km) | 71,0 % | 110 | 0,011 | l/tkm | 1,21 | | Ship, Freight, Transoceanic, 194.000DWT (kgkm) | 65,0 % | 20300 | | l/tkm | | | Truck, over 32 tonnes, EURO 4 (kgkm) - Global | 55,0 % | 60 | 0,023 | l/tkm | 1,38 | | Truck, over 32 tonnes, HVO, EURO 6 (kgkm) -
Europe | 53,3 % | 300 | 0,023 | l/tkm | 6,90 | | Assembly (A5) | Unit | Value | | | | | Diesel, burned (L) | L/DU | 0,00 | | | | | Waste, packaging, pallet, EUR wooden pallet, reusable, average treatment (kg) - A5, inkl. 85 km transp. | kg | 0,00 | | | | | De-construction demolition (C1) | Unit | Value | | | | | Diesel, burned (L) | L/DU | 0,63 | | | | | Transport to waste processing (C2) | Capacity utilisation
(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit | Value
(Liter/tonne) | | Truck, over 32 tonnes, EURO 4 (km) | 53,3 % | 300 | 0,023 | l/tkm | 6,90 | | Waste processing (C3) | Unit | Value | | | | | Materials to recycling (kg) | kg | 0,90 | | | | | Disposal (C4) | Unit | Value | | | | | Waste, scrap steel, to landfill (kg) | kg | 0,10 | | | | | Benefits and loads beyond the system boundaries (D) | Unit | Value | | | | | Substitution of primary steel with net scrap (kg) | kg | 0,68 | | | | #### **LCA: Results** The LCA results are presented below for the declared unit defined on page 2 of the EPD document. | Enviro | invironmental impact | | | | | | | | | | | |----------|----------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|-----------|--| | | Indicator | Unit | A1-A3 | A4 | A5 | C1 | C2 | C3 | C4 | D | | | | GWP-total | kg CO ₂ -eq | 4,13E+00 | 1,40E-01 | 6,07E-03 | 2,21E+00 | 2,71E-02 | 0,00E+00 | 4,29E-04 | -7,52E-01 | | | | GWP-fossil | kg CO ₂ -eq | 3,98E+00 | 1,40E-01 | 5,38E-06 | 2,21E+00 | 2,70E-02 | 0,00E+00 | 4,28E-04 | -7,51E-01 | | | | GWP-biogenic | kg CO ₂ -eq | 1,46E-01 | 6,05E-05 | 6,06E-03 | 4,15E-04 | 1,12E-05 | 0,00E+00 | 3,64E-07 | -4,14E-04 | | | | GWP-luluc | kg CO ₂ -eq | 3,03E-03 | 1,44E-04 | 1,38E-09 | 1,74E-04 | 7,96E-06 | 0,00E+00 | 8,40E-08 | -3,37E-04 | | | Ö | ODP | kg CFC11 -eq | 2,36E-07 | 2,42E-08 | 1,00E-12 | 4,78E-07 | 6,30E-09 | 0,00E+00 | 2,09E-10 | -2,38E-08 | | | Œ. | AP | mol H+ -eq | 1,79E-02 | 4,00E-03 | 4,33E-08 | 2,31E-02 | 1,38E-04 | 0,00E+00 | 4,18E-06 | -3,73E-03 | | | - | EP-FreshWater | kg P -eq | 1,82E-04 | 1,01E-06 | 6,50E-11 | 8,06E-06 | 2,08E-07 | 0,00E+00 | 3,20E-09 | -4,62E-05 | | | - | EP-Marine | kg N -eq | 3,66E-03 | 9,96E-04 | 1,86E-08 | 1,02E-02 | 4,69E-05 | 0,00E+00 | 1,57E-06 | -7,73E-04 | | | - | EP-Terrestial | mol N -eq | 3,80E-02 | 1,11E-02 | 1,99E-07 | 1,12E-01 | 5,17E-04 | 0,00E+00 | 1,73E-05 | -7,90E-03 | | | | POCP | kg NMVOC -eq | 1,56E-02 | 2,92E-03 | 5,11E-08 | 3,08E-02 | 1,54E-04 | 0,00E+00 | 4,94E-06 | -3,76E-03 | | | | ADP-minerals&metals ¹ | kg Sb -eq | 5,77E-05 | 1,98E-06 | 8,70E-11 | 3,40E-06 | 4,66E-07 | 0,00E+00 | 3,79E-09 | -1,30E-05 | | | | ADP-fossil ¹ | MJ | 4,29E+01 | 1,86E+00 | 6,32E-05 | 3,05E+01 | 4,24E-01 | 0,00E+00 | 1,38E-02 | -6,32E+00 | | | <u>%</u> | WDP ¹ | m^3 | 1,67E+01 | 8,21E-01 | 9,74E-05 | 6,47E+00 | 3,25E-01 | 0,00E+00 | 2,91E-02 | 3,90E+01 | | GWP total Global Warming Potential total; GWP fossil Global Warming Potential fossil fuels; GWP biogenic Global Warming Potential biogenic; GWP luluc Global W Potential land use change; ODP Ozone Depletion; AP Acidification; EP freshwater Eutrophication aquatic freshwater; EP marine Eutrophication aquatic marine; EP terrestrial Eutrophication terrestrial; POCP Photochemical zone formation; ADPE Abiotic Depletion Potential minerals and metals; ADPf Abiotic Depletion Potential fossil ## Remarks to environmental impacts [&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed ^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the | Addition | dditional environmental impact indicators | | | | | | | | | | | | |-------------|---|-------------------|----------|----------|----------|----------|----------|----------|----------|-----------|--|--| | In | dicator | Unit | A1-A3 | A4 | A5 | C1 | C2 | C3 | C4 | D | | | | | PM | Disease incidence | 2,79E-07 | 2,69E-09 | 1,00E-12 | 6,12E-07 | 2,40E-09 | 0,00E+00 | 8,90E-11 | -6,24E-08 | | | | | IRP ² | kgBq U235 -eq | 9,76E-02 | 7,82E-03 | 2,29E-07 | 1,30E-01 | 1,85E-03 | 0,00E+00 | 6,00E-05 | 2,70E-03 | | | | | ETP-fw ¹ | CTUe | 2,05E+02 | 1,32E+00 | 7,20E-05 | 1,66E+01 | 3,10E-01 | 0,00E+00 | 6,83E-03 | -4,19E+01 | | | | 45.
**** | HTP-c ¹ | CTUh | 1,45E-08 | 0,00E+00 | 0,00E+00 | 6,46E-10 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -3,61E-09 | | | | 26 D | HTP-nc ¹ | CTUh | 1,27E-07 | 3,60E-10 | 0,00E+00 | 1,53E-08 | 3,00E-10 | 0,00E+00 | 4,00E-12 | 7,85E-08 | | | | | SQP ¹ | dimensionless | 1,50E+01 | 8,05E-01 | 3,55E-05 | 3,86E+00 | 4,86E-01 | 0,00E+00 | 5,04E-02 | -4,73E-01 | | | PM Particulate Matter emissions; IRP Ionizing radiation – human health; ETP-fw Eco toxicity – freshwater; HTP-c Human toxicity – cancer effects; HTP-nc Human toxicity – non cancer effects; SQP Soil Quality (dimensionless) [&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed ^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator ^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator. Let's connect | Resource use | | | | | | | | | | | |--------------|---------|----------------|----------|-----------|-----------|----------|----------|----------|----------|-----------| | | dicator | Unit | A1-A3 | A4 | A5 | C1 | C2 | C3 | C4 | D | | Ç.C. | PERE | MJ | 2,74E+00 | 2,21E-02 | 1,30E-06 | 1,65E-01 | 5,34E-03 | 0,00E+00 | 2,13E-04 | -5,13E-01 | | | PERM | МЈ | 5,55E-02 | 0,00E+00 | -5,55E-02 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | ₽, | PERT | МЈ | 2,79E+00 | 2,21E-02 | -2,77E-03 | 1,65E-01 | 5,34E-03 | 0,00E+00 | 2,13E-04 | -5,13E-01 | | | PENRE | МЈ | 4,29E+01 | 1,87E+00 | 6,32E-05 | 3,05E+01 | 4,24E-01 | 0,00E+00 | 1,38E-02 | -6,32E+00 | | . Åg | PENRM | МЈ | 0,00E+00 | IX. | PENRT | МЈ | 4,29E+01 | 1,87E+00 | 6,32E-05 | 3,05E+01 | 4,24E-01 | 0,00E+00 | 1,38E-02 | -6,32E+00 | | | SM | kg | 2,17E-01 | 0,00E+00 | 2 | RSF | МЈ | 2,60E-02 | 6,10E-04 | 3,79E-08 | 4,05E-03 | 1,87E-04 | 0,00E+00 | 4,39E-06 | 2,71E-02 | | | NRSF | МЈ | 2,22E+00 | -4,25E-03 | 4,32E-07 | 5,96E-02 | 6,26E-04 | 0,00E+00 | 1,26E-05 | 7,90E-01 | | % | FW | m ³ | 2,23E-02 | 1,93E-04 | 4,60E-08 | 1,57E-03 | 4,83E-05 | 0,00E+00 | 1,65E-05 | -1,58E-03 | PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERT Use of renewable primary energy resources used as raw materials; PERT Total use of renewable primary energy resources; PENRE Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM Use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; FW Use of net fresh water [&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed | End of life - Was | ind of life - Waste | | | | | | | | | | |-------------------|---------------------|------|----------|----------|----------|----------|----------|----------|----------|-----------| | Inc | dicator | Unit | A1-A3 | A4 | A5 | C1 | C2 | C3 | C4 | D | | | HWD | kg | 1,47E-02 | 1,14E-04 | 0,00E+00 | 8,96E-04 | 2,32E-05 | 0,00E+00 | 0,00E+00 | -3,91E-03 | | Ū | NHWD | kg | 6,53E-01 | 5,00E-02 | 2,00E-04 | 3,61E-02 | 3,69E-02 | 0,00E+00 | 1,00E-01 | -3,07E-01 | | 3 | RWD | kg | 9,68E-05 | 1,24E-05 | 0,00E+00 | 2,11E-04 | 2,89E-06 | 0,00E+00 | 0,00E+00 | 2,07E-06 | HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; "Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed | End of life - Outpu | nd of life - Output flow | | | | | | | | | | | |---------------------|--------------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|--| | Indicat | tor | Unit | A1-A3 | A4 | A5 | C1 | C2 | C3 | C4 | D | | | @ D | CRU | kg | 0,00E+00 | | \$> | MFR | kg | 2,16E-01 | 0,00E+00 | 7,25E-05 | 0,00E+00 | 0,00E+00 | 9,00E-01 | 0,00E+00 | 0,00E+00 | | | DØ | MER | kg | 1,14E-04 | 0,00E+00 | 3,56E-10 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | | 50 | EEE | MJ | 5,24E-04 | 0,00E+00 | 8,67E-05 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | | DØ | EET | MJ | 7,92E-03 | 0,00E+00 | 1,31E-03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported energy Thermal "Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed | Biogenic Carbon Content | | | | | | | | | | | |-------------------------|---------------------|--|--|--|--|--|--|--|--|--| | Unit | At the factory gate | | | | | | | | | | | kg C | 0,00E+00 | | | | | | | | | | | kg C | 1,65E-03 | | | | | | | | | | | | kg C | | | | | | | | | | Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2 # **Additional Norwegian requirements** ## Greenhouse gas emissions from the use of electricity in the manufacturing phase National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3). ## **Dangerous substances** The product contains no substances given by the REACH Candidate list or the Norwegian priority list. #### **Indoor environment** For outdoor use only # **Additional Environmental Information** | Environmental impa | vironmental impact indicators EN 15804+A1 and NPCR Part A v2.0 | | | | | | | | | | |--------------------|--|----------|----------|----------|----------|----------|----------|----------|-----------|--| | Indicator | Unit | A1-A3 | A4 | A5 | C1 | C2 | C3 | C4 | D | | | GWP | kg CO ₂ -eq | 1,78E+00 | 1,38E-01 | 1,06E-04 | 2,19E+00 | 2,68E-02 | 0,00E+00 | 4,20E-04 | -7,04E-01 | | | ODP | kg CFC11 -eq | 9,37E-08 | 2,36E-08 | 1,40E-11 | 3,79E-07 | 5,10E-09 | 0,00E+00 | 1,66E-10 | -2,42E-08 | | | POCP | kg C ₂ H ₄ -eq | 1,28E-03 | 8,54E-05 | 2,29E-08 | 3,37E-04 | 3,52E-06 | 0,00E+00 | 1,03E-07 | -4,65E-04 | | | AP | kg SO ₂ -eq | 6,10E-03 | 3,17E-03 | 5,46E-07 | 3,23E-03 | 5,44E-05 | 0,00E+00 | 1,24E-06 | -2,82E-03 | | | EP | kg PO ₄ ³⁻ -eq | 7,85E-04 | 3,47E-04 | 1,61E-07 | 3,59E-04 | 5,75E-06 | 0,00E+00 | 1,47E-07 | -4,18E-04 | | | ADPM | kg Sb -eq | 8,32E-06 | 1,98E-06 | 1,75E-09 | 3,40E-06 | 4,66E-07 | 0,00E+00 | 3,79E-09 | -1,30E-05 | | | ADPE | MJ | 1,79E+01 | 1,84E+00 | 1,23E-03 | 3,02E+01 | 4,16E-01 | 0,00E+00 | 1,36E-02 | -6,87E+00 | | | GWPIOBC | kg CO ₂ -eq | 4,12E+00 | 1,40E-01 | 0,00E+00 | 2,21E+00 | 2,71E-02 | 0,00E+00 | 0,00E+00 | -1,13E+00 | | GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources; GWP-IOBC/GHG Global warming potential calculated according to the principle of instantanious oxidation (except emissions and uptake of biogenic carbon) # **Bibliography** ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures. ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines. EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products. ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products. ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories. Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Graafland and Iversen, (2022) EPD generator for EPD generator for NPCR 013 Part B for Steel and Aluminum, Background information for EPD generator application and LCA data, LCA.no report number: 08.22 NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge. NPCR 013 Part B for Steel and Aluminium Construction Products , Ver. 4.0, 06.10.2021, EPD Norway. | | Program operator and publisher | Phone: | +47 23 08 80 00 | |-------------------------|---|---------|----------------------| | © epd-norway | The Norwegian EPD Foundation | e-mail: | post@epd-norge.no | | Global Program Operator | Post Box 5250 Majorstuen, 0303 Oslo, Norway | web: | www.epd-norge.no | | | Owner of the declaration: | Phone: | (+47) 69 10 24 60 | | PRETEC | Pretec Norge AS | e-mail: | post@pretec.no | | Let's connect | Kampenesmosen 3, 1739 Borgenhaugen | web: | www.pretec.no | | | Author of the Life Cycle Assessment | Phone: | +47 916 50 916 | | (LCA) | LCA.no AS | e-mail: | post@lca.no | | no.no | Dokka 6B, 1671 | web: | www.lca.no | | | Developer of EPD generator | Phone: | +47 916 50 916 | | (LCA) | LCA.no AS | e-mail: | post@lca.no | | .no | Dokka 6B,1671 Kråkerøy | web: | www.lca.no | | ECO PLATFORM | ECO Platform | web: | www.eco-platform.org | | | ECO Portal | web: | ECO Portal |